Inhaltsverzeichnis

Algorithmen und geometrische Konstruktionen

Geometrische Konstruktionen mit Zirkel und Lineal

Hilfsmittel:

Erlaubte Zeichenoperationen

Geometrische Grundkonstruktionen

Konstruieren der Mittelsenkrechten einer Strecke

Gegeben ist eine Strecke $\overline{\text{PQ}}$.

  1. Ich zeichne einen Kreis $\text{k}_1$ um den Punkt P durch den Punkt Q.
  2. Ich zeichne einen Kreis $\text{k}_2$ um den Punkt Q durch den Punkt P. Wo die Kreise $\text{k}_1$ und $\text{k}_2$ sich schneiden, entstehen die Punkte $\text{S}_1$ und $\text{S}_2$.
  3. Ich zeichne eine Gerade m durch die Punkte $\text{S}_1$ und $\text{S}_2$. m ist die gesuchte Mittelsenkrechte. Wo m die Strecke $\overline{\text{PQ}}$ schneidet, entsteht der Punkt M. M ist der gesuchte Mittelpunkt der Strecke $\overline{\text{PQ}}$.



Halbieren eines Winkels

Gegeben ist ein Winkel $\alpha$ mit dem Scheitelpunkt S.

  1. Ich zeichne einen Kreis k mit einen beliebigen Radius r um den Punkt S. Wo k die Schenkel des Winkels schneidet, entstehen die Punkte P und Q.
  2. Ich konstruiere die Mittelsenkrechte w der Strecke $\overline{\text{PQ}}$. w ist die gesuchte Winkelhalbierende.



Errichten der Senkrechten zu einer Geraden in einem Punkt der Geraden

Gegeben ist eine Gerade g und ein Punkt P $\in$ g.

  1. Ich zeichne einen Kreis k mit einen beliebigen Radius r um den Punkt P. Wo k die Gerade g schneidet, entstehen die Punkte $\text{S}_1$ und $\text{S}_2$.
  2. Ich konstruiere die Mittelsenkrechte s der Strecke $\overline{\text{S}_1\text{S}_2}$. s ist die gesuchte Senkrechte.



Fällen des Lotes von einem Punkt auf eine Gerade

Gegeben ist eine Gerade g und ein Punkt P $\not\in$ g.

  1. Ich zeichne einen Kreis k mit einen Radius r, der größer ist als der Abstand von P zu g, um den Punkt P. Wo k die Gerade g schneidet, entstehen die Punkte $\text{S}_1$ und $\text{S}_2$.
  2. Ich konstruiere die Mittelsenkrechte l der Strecke $\overline{\text{S}_1\text{S}_2}$. l ist das gesuchte Lot.



Aufgabe 1

Konstruiere ein Beispiel für jede der Grundkonstruktionen!

Aufgabe 2

Führe die folgenden Konstruktionen mit Zirkel und Lineal durch!

arbeitsblatt_konstruktionen.pdf

Lösungsvideo zu a) und b)
Lösungsvideo zu c)

Aufgabe 3

Löse die letzten beiden Aufgaben mit Hilfe von Geogebra, indem du

Weitere Konstruktionsaufgaben

Da wir im vorherigen Abschnitt gezeigt haben, dass die Grundkonstruktionen mit Zirkel und Lineal durchführbar sind, können wir diese als neue Konstruktionsbefehle nutzen.

Aufgabe 4

Führe die folgenden Konstruktionen mit Hilfe Geogebra Geometrieapp nur unter Verwendung folgenden Konstruktionsbefehle durch! Notiere dir jeweils das Konstruktionsprotokoll!

Konstruktionen:

Geogebra Geometrieapp

Hilfen:




Algorithmen

Eine Konstruktionsbeschreibung ist die eindeutige Beschreibung eines Vorgangs. Weitere Beispiele für die Beschreibung von Vorgängen sind:

Der arabische Mathematiker Abu Ja'far Mohammed ibn Musa al-Khowarizmi hat mathematische Verfahren in der ersten Hälfte des 9. Jahrhunderts beschrieben. Deshalb nennt man solche Beschreibungen auch Algorithmus.

Ein Algorithmus ist eine endliche Folge von eindeutig bestimmten Elementaranweisungen, die den Lösungsweg eines Problems exakt und vollständig beschreiben. 1)

Auch in der Informatik gibt Algorithmen.

Ein Computerprogramm ist ein vom Computer ausführbarer Algorithmus, der in einer Programmiersprache verfasst ist.

Aufgabe

Entscheide jeweils, ob es sich um einen Algorithmus handelt:

>> Programmieren mit dem Python-Turtlemodul

1)
Ziegenbalg Jochen, Ziegenbalg Oliver, Ziegenbalg Bernd: Algorithmen von Hamurapi bis Gödel, {Springer Sektrum, Wiesbaden, 2016, S.26